Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 30(8): 1088-1097.e3, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660157

RESUMO

The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.


Assuntos
Proteínas de Escherichia coli , Proteínas de Bactérias/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Lipídeos , Peptidoglicano/química , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
2.
Photosynth Res ; 150(1-3): 343-356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33146872

RESUMO

Bacteria exposed to environmental stresses often exhibit superior acclimation abilities to environmental change. Acid treatment causes an increase in the cell length of the cyanobacterium Synechocystis sp. PCC6803 under light conditions. We aimed to elucidate the relationship between acidic stress and cell enlargement. After being synchronized under dark conditions, the cells were cultivated at different pH (pH 8.0 or pH 6.0) levels under light conditions. Synechocystis 6803 cells exhibited only cell growth occurred (cell volume expansion) and slow proliferation under the acidic condition. In the recovery experiment of the enlarged cells, they proliferated normally at pH 8.0, and the cell lengths decreased to the normal cell size under light conditions. Inhibition of cell division might be caused by acidic stress. To understand the effect of acidic stress on cell division, we evaluated the expression of FtsZ via Western blotting. The FtsZ concentration in cells was lower at pH 6.0 than at pH 8.0 and was not sufficient for cell division in the photoautotrophic conditions. ClpXP is well known as a regulator of the Z-ring dynamics in E. coli. The transcriptional level of four clpXP genes was upregulated approximately threefold at pH 6.0 after 24 h compared with that in cells grown at pH 8.0. The lack of FtsZ may be caused by the upregulation of clpXP expression under acidic condition. Therefore, ClpXP may participate in the degradation of FtsZ and be involved in the regulation of cell division via FtsZ under acidic stress in Synechocystis 6803.


Assuntos
Synechocystis , Proteínas de Bactérias/genética , Divisão Celular , Proteínas do Citoesqueleto/genética , Escherichia coli , Células Gigantes , Synechocystis/genética
3.
Photosynth Res ; 146(1-3): 165-174, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32424464

RESUMO

So far, the molecular mechanisms underlying the acidic-stress responses of plants are complicated and only fragmentally understood. Here, we investigated the mechanisms responsible for acidic-stress acclimation. Previously, DNA microarray analysis identified the sll1558 gene in Synechocystis sp. PCC 6803 (hereafter called Synechocystis 6803) to be upregulated following short-term acid treatment (1 h at pH 3.0). The sll1558 gene encodes uridine diphosphate-glucose pyrophosphorylase (UDP-glucose pyrophosphorylase), which catalyzes the conversion of glucose-1-phosphate into UDP-glucose. We constructed mutant cells for this gene and analyzed their phenotype. The sll1558 gene did not completely segregate in sll1558 mutant cells; thus, Sll1558 is essential for the survival of Synechocystis 6803. Besides, the partially disrupted sll1558 mutant cells were highly sensitive to acidic stress (pH 6.0) as well as other stress conditions (high salt, high osmolality, high/low temperature, and ultraviolet-B stress); the number of sll1558 transcripts increased under these conditions. UDP-glucose is used for the synthesis of various materials, such as glycolipids. From the membrane lipid composition analysis, digalactosyldiacylglycerol decreased and phosphatidylglycerol increased in the partially disrupted sll1558 mutant cells under acidic stress. These results suggest that sll1558 is important not only for the survival of Synechocystis 6803, but also for tolerance under various stress conditions.


Assuntos
Synechocystis/metabolismo , Mutação , Fenótipo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Synechocystis/genética , Regulação para Cima
4.
Photosynth Res ; 139(1-3): 325-335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29959748

RESUMO

Over 50 ATP-binding cassette (ABC) transporter-related genes are detected in the Synechocystis sp. PCC 6803 genome by genome sequence analysis. Deletion mutants of other substrate-unknown ABC transporter genes were screened for their acid stress sensitivities in a low-pH medium to identify ABC transporters involved in acid resistance. We found that a mutant of sll1180 encoding proteins with homology to HlyB in Escherichia coli (E.coli) is more sensitive to acid stress than wild-type (WT) cells and analyzed the abundance of expression of the genes in WT cells under acid stress condition by quantitative real-time reverse transcriptase-polymerase chain reaction. sll1180 expression increased in the WT cells after acid stress treatment. Immunofluorescence revealed that Sll1180 localized in the plasma membrane. These results suggest that Sll1180 has an important role in the growth of Synechocystis sp. PCC 6803 under acid stress conditions. HlyB, HlyD, and TolC complex transport HlyA in E.coli; therefore, we searched for genes corresponding to these in Synechocystis sp. PCC 6803. A BlastP search suggested that HlyA, HlyD, and TolC proteins had homology to Sll1951, Sll1181, and Slr1270. Therefore, we constructed deletion mutant of these genes. sll1181 and slr1270 mutant cells revealed acid stress sensitivity. The bacterial two-hybrid analysis showed that Sll1180 interacted with Sll1181 and Sll1951. Dot blot analysis of Sll1951-His revealed that the sll1180 and sll1181 mutant cells did not transport Sll1951-His from the cytoplasm to the extracellular matrix. These results suggest that Sll1180 and Sll1181 transport Sll1951 and that Sll1951-outside of the cells-might be a key factor in acid stress tolerance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Synechocystis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Synechocystis/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...